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FLUTTER OF CURVED AND FLAT SANDWICH PANELS 

SUBJECTED TO SUPERSONIC FLOW 

By John A. McElman 

SUMMARY 


A small-deflection theory i s  used i n  conjunction with a Galerkin technique 
t o  determine the  f l u t t e r  charac te r i s t ics  of simply supported sandwich panels, 
both f la t  and s l i g h t l y  curved. The sandwich cover p l a t e s  a re  assumed t o  be of 
t h e  same m a t e r i a l  and thickness and the  core mater ia l  i s  assumed i so t ropic .  
The flow i s  assumed supersonic over one surface, and s t a t i c  aerodynamic s t r i p  
theory i s  used t o  describe the aerodynamic loading. A two-mode solution i s  used 
t o  i l l u s t r a t e  the e f f e c t s  of curvature, core transverse shear s t i f fnes s ,  and 
midplane loads. It i s  found t h a t  the e f f e c t s  of curvature can be separated from 
the  core s t i f f n e s s  e f f ec t s .  

INTRODUCTION 

Considerations of dynamic aeroe las t ic  i n s t a b i l i t y ,  or f l u t t e r ,  of skin 
panels a r e  important i n  the design of supersonic and hypersonic vehicles.  A 
subs tan t ia l  body of l i t e r a t u r e  t r e a t s  various aspects of the  panel f l u t t e r  prob
lem. (See re fs .  1 t o  5 and references c i t ed  therein.)  Previous work has focused 
a t t en t ion  primarily on homogeneous i so t ropic  panels. The sandwich panel, on the  
other  hand, i s  being u t i l i z e d  increasingly i n  the  design of aerospace vehicles.  
Under most circumstances, sandwich construction provides higher strength-weight 
r a t i o s  i n  a s t ruc ture  than a homogeneous panel and may provide sui table  protec
t i o n  against  micrometeoroid penetration. The primary d i s t inc t ion  between sand
wich and homogeneous panels i s  the  grea te r  importance of transverse shear f l e x i 
b i l i t y  i n  the  sandwich panel ( re f .  6 ) .  The purpose of the present invest igat ion 
i s  t o  provide some estimate of the e f f e c t  of t ransverse shear s t i f f n e s s  on the  
f l u t t e r  boundaries f o r  f l a t  and curved sandwich panels. I n  this invest igat ion 
both face sheets of the sandwich panel a r e  assumed t o  be of the  same material 
and the  same thickness and t h e  core mater ia l  i s  assumed isotropic .  The flow i s  
assumed supersonic over one surface, and l inear ized  s t a t i c  aerodynamic s t r i p  
theory i s  used t o  describe the  aerodynamic loading. 

An equilibrium equation governing the  lateral def lec t ion  of a curved sand
wich panel i s  derived i n  reference 7 on the  basis of small-deflection theory. 
T h i s  equation with modifications t o  account f o r  t h e  l a t e r a l  i n e r t i a  and aero
dynamic loadings i s  used i n  t h i s  analysis.  Ef fec ts  of midplane loads, t rans
verse shear s t i f fnes s ,  and panel curvature a r e  evaluated. 



S m O L s  

A = Rx - 2v2 

a length of panel, i n .  

b width of panel, in .  

2tsEsa 4 
C curvature parameter, 

D,r 2 4rc 

DQ t ransverse shear s t i f f n e s s  of i so t rop ic  sandwich panel, lb / in .  

DS f l exura l  s t i f f n e s s  of i so t rop ic  sandwich panel, 

Estsh2 
E s t s 3  + , in-lb 

6(1 - p2) 2(1 - p2)  

ES Young's modulus f o r  faces  of sandwich panel, lb/sq in .  

h depth of sandwich panel measured between middle surfaces of 
faces ,  in.  

j,m,n,p,f in tegers  

K~~ = j'(j + 1-12 + v'(2j2 + 2 j  + 1) + v 4 

k2 = ya4c02/Ds 

~j~ = (2j2 + 2 j  + 1) + 2v2 

2 lateral  aerodynamic loading, lb / sq  in .  

M Mach number 

aerodynamic coupling parameter 

NxJy midplane force i n t e n s i t i e s ,  lb/ in .  

2 




Dssc2 
core s t i f f n e s s  parameter, 

a2DQ 

";l'2 'dynamic pressure, - lb / sq  in .  

Nxa2 
R, = 

2 D S  

r radius of curvature, in.  


t time, sec 


t S  thickness of sandwich face p la tes ,  in .  


tl = 2ts  

U veloci ty  of airflow, in./sec 

W l a t e r a l  def lect ion of panel, i n .  

amplitude of m n  mode, in .  

X,Y,Z Cartesian coordinates 

Y m a s s  per  un i t  area of panel, Ib-sec2/in. 3 

A dynamic-pressure parameter, 	 -
DSp 

Acr c r i t i c a l  value of A 

Poisson 's rati o  

P m a s s  densi ty  of air, lb-sec2/in. 4 

w c i rcu lar  frequency, radians/ sec 
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A comma followed by a subscript  denotes d i f fe ren t ia t ion  of t he  primary 
symbol with respect t o  the  subscript. 

STATEMENT OF THE PROBLEM 

The configuration t o  be analyzed 
consis ts  of a simply supported curved 
sandwich panel of uniform radius of cur
vature r, mounted i n  a r i g i d  w a l l  with 
air  flowing over the  top surface a t  Mach 
number M. (See f i g .  1.) The face 
p l a t e s  are  of the same material  and are 
of constant thickness t,. The core has 
a uniform thiclmess h - t,, where h 
i s  the  distance between the  middle sur
faces  of the face p la tes .  The panel has 
a length a and a width b and i s  sub
jected t o  constant midplane force inten
s i t i e s  Nx and Ny (pos i t ive  i n  com
pression).  The in-plane shear force 
in t ens i ty  i s  assumed t o  be zero. 4 

The equilibrium equation and appro- Figure 1.- Panel  and coordinate system. 
p r i a t e  boundary conditions are as fo l 
lows (see refs. 1 and 7) : 

w(x,O,t) = w(x,b,t) = w(O,y,t) = w(a,y,t) = 0 (1b) 

where 

& - + 2 	a4 a4 + -a4 
h 4  ax2ay* ay4 
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-4The inverse operator V i s  defined by a 4 ( + w )  = V4(V-4w) = w. The 
remaining terms i n  equation ( la) are defined as follows: 

ES Young's modulus f o r  face p l a t e s  

DQ transverse shear s t i f fnes s  of panel 

DS f l exura l  s t i f f n e s s  of i so t ropic  sandwich panel 

Y mass of panel per un i t  area 

w(x,y,t) l a t e r a l  def lect ion of panel 

Z(x,y,t) l a t e r a l  loading per  un i t  area due t o  aerodynamic pressures 

For s t a t i c  s t r i p  theory, the  l a t e r a l  loading i s  given by the simple Ackeret 
value 

z(x,y, t )  = 2q a w  
P ax 

where q i s  the  dynamic pressure pU2/2, and p = /M2 - 1. The development of 
equation ( la) i s  based on the  assumptions that  the  def lect ions are  small com
pared t o  the t o t a l  panel thickness, the t o t a l  thickness i s  s m a l l  compared t o  
the radius of curvature, and the  sandwich core ca r r i e s  no d i r ec t  stress. 

ANALYSIS 


A solution which satisfies the boundary conditions f o r  simply supported 
edges i s  assumed as follows: 

f 
w(x,y,t) = 1wm sinp+)sin(T) n w  eiot (3) 

m = l  

where wmn i s  the  amplitude of the  mn mode and o i s  the  c i rcu lar  frequency. 
The frequency (c, i s ,  i n  general, complex; however, a t ten t ion  i s  directed p r i 
marily t o  real values f o r  which the  motion i s  harmonic. Subst i tut ing equa

t i o n  (3) in to  equation ( la)  and nondimensionalizing by multiplying by -a4 
4 

DSx 


r e s u l t s  i n  the  following equation: 
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+ Qv4 + m)m2 - (B + &Bv2 + wm sin(T)mm 

0 

+ 	 ""(61" + Qv2 + l ) w m  cos(?) = 0 

m =1 5c3 

where 

2tSESa4 c =  
D s r  2 45c 

B = k2-+ v2Ry - v 4 
43r 


The quant i t ies  C and Q are dimensionless curvature and core s t i f f n e s s  
parameters, respectively; R, and Ry a re  midplane loading parameters; A i s  a 
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dynamic-pressure parameter; k2 i s  a frequency parameter; and v i s  a length
width-ratio parameter. 

Applying t h e  Galerkin technique by multiplying equation (4) by s i n  pz
a 

and integrat ing y i e lds  the  following s e t  of equations for  t he  coeff ic ients  wm: 

- ( B  + &Bv2 + - 1+(Qp2 + Qv2 + l )wpn = 0 
3t 

where 

4mP where p+m i s  odd 
p2-m2 

0 where p+m i s  even 

It can be noted t h a t  equations (4) and ( 5 )  are  uncoupled in  the  cross-stream 
direct ion;  n i s  only a parameter of the solution. 

A general two-mode solution i s  pursued corresponding t o  any two consecutive 
modes j and j + 1, and a charac te r i s t ic  equation i s  obtained by se t t i ng  the  
determinant of t he  coef f ic ien ts  of equations ( 5 )  equal t o  zero. By use of the  
def in i t ion  of f l u t t e r  discussed i n  reference 1, the  charac te r i s t ic  equation i s  
solved f o r  A, and A i s  maximized with respect t o  the  frequency parameter B 
t o  give a c r i t l c a l  value her, which i s  a measure of t he  f l u t t e r  speed. T h i s  
procedure r e s u l t s  i n  the  following closed-form expression f o r  Acr: 

( 2 j  + q2,4 KjnQ + Ljn  + c k j 2 (j + 1)2v2 + (2 j2  + 2 j  + 1 ) v Y  

JnQ2 + LjnQ + 1 Kjn 
2Acr = 8j ( j  + 1) ’%+ K. I


( 6 )  
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where 

A solution containing two consecutive modes, j and j + 1, i s  assumed since,  
i n  t h e  region of i n t e r e s t ,  t he  minimum f l u t t e r  speed occurs with t h e  coalescence 
of t he  frequencies of consecutive modes. More accurate solut ions can be obtained 
by including more modes or by solving t h e  uncoupled d i f f e r e n t i a l  equation exactly 
with n as a parameter. The r e l a t i v e  accuracy of these methods as applied t o  
a f l a t  homogeneous i so t rop ic  p l a t e  i s  shown i n  reference 1. 

If j = 1, equation (6) gives t h e  following two-term approximation f o r  A,,
corresponding t o  t h e  f i rs t  two modes i n  the  streamwise d i rec t ion  and any one 
mode i n  the  cross-stream direct ion:  

- 9fi4 KlnQ + Lln + C(8v2  + 5v4)
Acr 16 -% + 

KlnQ2 + LlnQ + 1 Kln2 

where 

= 4 + 5v2 + v 4  

L l n  = 5 + 2v2 

LIMITING CASES 

If t h e  core thickness of t h e  sandwich panel h - ts i s  allowed t o  approach 
zero as DQ approaches i n f i n i t y  and i f  t h e  thickness and f l exura l  s t i f f n e s s  of 

t h e  r e su l t i ng  homogeneous i so t rop ic  panel are denoted by t2 and D, respec
t i v e l y ,  then 

h = ts 

Q = O  
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and equation (7) reduces t o  

12a4(1 - p2)(5v4 + 
A,, = 16 

- A) + 
Jr4t22r2(4 + 5v2 + 

where A = - 2v2. Equation (8) corresponds t o  equation 1.21 i n  reference 2 
(where m and r i n  equation 1.21 are equal t o  1 and 2, respectively) f o r  the  
f l u t t e r  of a curved homogeneous panel. Further, by l e t t i n g  the panel radius r 
approach in f in i ty ,  equation (8) becomes 

which corresponds t o  equation (16) i n  reference 1for  the  f l u t t e r  of a f l a t  
homogeneous panel. 

RESULTS AND DISCUSSION 

F la t  Sandwich Panel 

The c r i t i c a l  dynamic-pressure parameter A,, f o r  a f la t  sandwich panel 
can be obtained from equation (6) by l e t t i n g  C = 0.  Equation (6) then becomes 

The value of A,, i n  equation (10) i s  a function of F&, j ,  v ,  and Q. For 
a given value of Q and a moderate value of 

t 

4 

a/b, the  f l u t t e r  boundary (Acr as 
a f inc t ion  of 
sidered herein. 

%) i s  a minimum for j = n = 1, f o r  t h e  range of % con
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To i l l u s t r a t e  t he  e f f e c t s  of t he  core s t i f f n e s s  parameter Q, a value of 
a/b of 1i s  chosen. For j = v = 1, equation (10) becomes 

+ 	 10Q + 7 
10Q2 + 7Q + 1 

The f l u t t e r  boundaries (Acr as a function of Rx 1 f o r  various values of Q 
C 

are presented i n  f igure  2. The boundary f o r  Q = 0 i s  t h e  boundary f o r  a f la t  
homogeneous panel of thickness 2ts.  The exact solut ion f o r  a f la t  homogeneous 
panel i s  also shown i n  f igure  2. (See r e f .  1.) The f l u t t e r  boundary i s  very 
sens i t ive  t o  the  value of Q, e spec ia l ly  i n  the  lower ranges of Q (0  < Q < 1). 
This s e n s i t i v i t y  i s  i l l u s t r a t e d  i n  f igure  3 i n  which hcr i s  p lo t ted  as a func
t i o n  of Q f o r  various values of R,. The s teep slopes of these curves f o r  
0 < Q < 1 indica te  t ~ elarge  influence t h a t  the  core s t i f f n e s s  has on the  f l u t 
t e r  boundary i n  t h i s  range. The range of v a l i d i t y  of t he  results i n  f igures  2 
and 3 i s  l imi ted  by the  buckling cha rac t e r i s t i c s  of t he  panel. For example, a 
square panel with no s t r e s s  i n  the  y-direction (RY = 0)  and Q = 0.1 buckles 
i f  Rx = 3.3 ( f o r  A = 0) .  I n  t h i s  case the  curve f o r  Q = 0.1 i n  f igure  2 i s  
only va l id  f o r  R, up t o  approximately 3.3 (see ref. 3 ) .  Other values of a/% 
and Ry y ie ld  other ranges of va l id i ty .  

It should be noted t h a t  a l l  parameters considered i n  f igure  2 (Acr,  Q, 
and Rx) a r e  functions of t he  panel 

- 3 - 2 - 1 0 I 2 3 4 5 6 

R x  

Figure 2.- Effec t  of t ransverse  shear 
s t i f f n e s s  on f l u t t e r  boundary f o r  
flat sandwich panel.  C = 0; 
j = v  =l. 

f l exura l  s t i f f n e s s  D,. A s  a result, a 

7 0 I 2 3 4 5 

P 


Figure 3.- Varia t ion  of f l u t t e r  param
e t e r  wi th  t r a n s f e r  shear s t i f f n e s s  
f o r  s eve ra l  values of streamwise 
in-plane load  parameter. v = 1;
Ry =o;  c = o .  
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sandwich panel having the  same f l u t t e r  speed as a homogeneous panel provides a 
reduction i n  w e i g h t  that i s  not obvious from f igure 2. For example, a typ ica l  
f l a t  honeycomb sandwich panel with cover p l a t e s  and core of the same material, 

a core density of 3 percent of t h e  m a t e r i a l  density, -- 10, a length-width 
1’ t S  

r a t i o  a/b of 1, length a of 20, core s t i f f n e s s  parameter Q of 0.0521, 

5 and cover p l a t e  thickness ts of 0.0441 inch f l u t t e r s  at  the same dynamic 
pressure q as a homogeneous panel of the same material and a thickness of 
0.342 inch. The w e i g h t  of the  sandwich panel, however, i s  only 29 percent of 
t h e  weight of t he  homogeneous panel. 

Curved Sandwich Panel 

F lu t t e r  boundaries f o r  a curved sandwich panel a re  obtained from equa
t i o n  (6). The e f f ec t  of curvature on A,, i s  given by the  expression 

which i s  the  same correction f ac to r  derived i n  reference 2. The curvature 
e f f e c t s  are e n t i r e l y  contained i n  this expression and a re  completely separated 
fmm the  e f f e c t s  of the  core s t i f f n e s s  parameter Q. For t h i s  reason, the  
e f f e c t s  of curvature can be thought of i n  t h e  form of a correction term which 
can be added t o  the  value of A,, f o r  a f la t  sandwich panel, as i s  done i n  re f 
erence 2 f o r  homogeneous panels. 

One important charac te r i s t ic  of curved panels i s  tha t ,  whereas a f la t  panel 
has a minimum f l u t t e r  boundary f o r  j = n = 1 f o r  the range of % considered 
herein, a curved panel can have a minimum boundary with other  combinations of 
j and n. A s  a re su l t ,  various combinations of j and n must be examined 
by trial and e r r o r  i n  order t o  determine the  combination t h a t  results i n  the  
minimum f l u t t e r  boundary. A more de ta i led  discussion on the  f l u t t e r  of curved 
panels i s  given i n  reference 2. Although t h e  discussion i n  reference 2 i s  con
cerned spec i f ica l ly  with homogeneous panels, the e s sen t i a l  features a l so  apply 
t o  sandwich panels. 

Figure 4 i s  a p lo t  of the  f l u t t e r  boundaries f o r  curved sandwich panels 
f o r  various values of t h e  core s t i f f n e s s  parameter Q and f o r  spec i f ic  values 

of the  curvature parameter and length-width r a t i o  (C = 100; 
b
5 = 1). The bound

aries have been minimized (by trial and er ror )  with respect t o  j and n and 
are ,  therefore,  t he  lowest boundaries f o r  t h e  range of Rx considered. The 
f l u t t e r  boundary i s  g rea t ly  affected by the  core s t i f f n e s s  i n  much t h e  same 
manner as it w a s  f o r  t he  f la t  panel. F lu t t e r  boundaries f o r  curved sandwich 

Q = 0.1 and 	 5 = 1 are shown i n  f igure 5 f o r  various values of C.
b 
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The boundaries have again been minimized with respect t o  j and n. It can be 
seen from t h i s  f igure  t h a t  curvature tends t o  s t i f f e n  the panel and raise the  
f l u t t e r  boundary. 

lZoor 1 

4 -2 0 2 4 6 8 I O  12 14 15 18 20 0 1 2 3 4 5 6 7 8 9 I O  

R" R x  

Figure 4.- E f f e c t  of t r a n s v e r s e  shear Figure 5.- E f f e c t  of curvature  on 
stiffness on f l u t t e r  boundary f o r  f l u t t e r  boundary f o r  sandwich 
curved sandwich panel. C = 100; 

panel. 
b
a = 1; Q = 0.1.a- _- 1. 

b 

CONCLUDING REMARKS 

A small-deflection theory i s  used i n  conjunction with a two-mode Galerkin 
solution t o  analyze approximately the  f l u t t e r  of sandwich panels, both f la t  and 
s l igh t ly  curved. Closed-form expressions are obtained from which f l u t t e r  bound
aries can be determined. For f l a t  sandwich panels the  f l u t t e r  boundaries are 
determined i n  a straightforward manner, but for curved sandwich panels the 
determination of boundaries requires a t r i a l  and e r r o r  minimization process. 

For a given appl icat ion and f l u t t e r  speed a sandwich panel can provide a 
substant ia l  reduction i n  weight as compared with a homogeneous panel. In  gen
eral, t he  e f f ec t  of core transverse shear s t i f fnes s  on the f l u t t e r  character
i s t i c s  of sandwich panels i s  found t o  be s ignif icant .  Curvature e f f e c t s  a re  
found t o  be completely separated from core s t i f fnes s  e f f ec t s  and within the  
l imi ta t ions  of the present analysis  can be t rea ted  i n  the same way as curvature 
of homogeneous panels. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., November 22, 1963. 
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